Continuous Simulation Aids for InfoSWMM

Subject:   Continuous Simulation Aids for InfoSWMM

 

If you have a large network and especially if you are doing continuous simulation then you want to have many tools for helping you understand the network and the simulation results.  

 

v  In InfoSWMM and H2OMAP SWMM you can have a Base Network with many differenct Child Scenaio generations.  A Child can be either based on the Base Scenario of a different generation Child Scenario.

 

v  Facility Manager allows you to make inactive and active sets areas of your network, which makes simulating larger and smaller models a snap to do in InfoSWMM.   Run Manager lets you control which areas of the model  network gets save to the  binary graphics file (Figure 1). 

 

v  The Process Control in  Run Manager (similar to the process control in SWMM 5) allows the modeler to control  which processes are simulation to  help in her model  calibration.

 

Figure 1.  Scenarios, Facility Manager and Run Manger Options.

 

 

 

Figure 2.  Run Manager Process Controls.

 

 

How to use SWMM 5 DOS to make an Output Table in the RPT file

Subject:   How to use SWMM 5 DOS to make an Output Table in the RPT file

You can make tables of the node,  link  and  Subcatchment output data in SWMM 5 if you use the DOS SWMM 5 program but not the Windows DLL.   Step 1 is to create the DOS batch file, Step 2 is to select the nodes, links and subcatchments, Step 3 is to run the batch file and Step 4 is to view the RPT tables or extract the data to Excel.  You can do this directly in the InfoSWMM and H2OMAP SWMM graphical user interfaces by using Run Manager, Step 5 to select the nodes, links and subcatchments and Step 6 to view the tables in the browser.

Step 1.   Make a Batch File to call the DOS SWMM 5

swmm5.exe Example1.inp  D:\swmm5.0.022\bob.rpt

pause

Step 2.  Add the nodes,  links and  subcatchments tables you want to generate in the RPT file

[REPORT]

CONTROLS         NO

LINKS                 ALL

NODES               ALL

SUBCATCHMENTS ALL

Step 3.  Run the Batch file

Step 4.  Extract the Tables from the RPT File of SWMM 5

  <<< Node 17 >>>

  ---------------------------------------------------------------------------------

                           Inflow  Flooding     Depth      Head       TSS      Lead

  Date        Time            CFS       CFS      feet      feet      MG/L      UG/L

  ---------------------------------------------------------------------------------

  JAN-01-1998 01:00:00      0.000     0.000     0.000   980.000     0.000     0.000

  JAN-01-1998 02:00:00      5.910     0.000     0.608   980.608    26.065     5.213

  JAN-01-1998 03:00:00     11.935     0.000     0.887   980.887    22.826     4.565

  JAN-01-1998 04:00:00     18.291     0.000     1.143   981.143    21.176     4.235

  JAN-01-1998 05:00:00     12.640     0.000     0.916   980.916    22.426     4.485

  JAN-01-1998 06:00:00      3.925     0.000     0.493   980.493    27.578     5.516

  JAN-01-1998 07:00:00      0.388     0.000     0.161   980.161    38.134     7.627

  JAN-01-1998 08:00:00      0.067     0.000     0.071   980.071    26.937     5.387

  JAN-01-1998 09:00:00      0.029     0.000     0.048   980.048     1.878     0.376

Step 5.  InfoSWMM and H2OMAP SWMM dialog for selecting nodes, links and subcatchments for generating a detailed RPT file table.

Step 6.  Sample InfoSWMM and H2OMAP SWMM RPT Tables if Report Options is used.

RDII or Tri Triangular Unit Hydrograph in InfoSewer

Subject:  RDII or Tri Triangular Unit Hydrograph in InfoSewer

The RDII method in InfoSewer is similar to the RDII or RTK  method in  InfoSWMM with some differences.    The RTK data for triangles 1, 2 and 3 are defined in the Unit Hydrograph but instead of individual R values, the overall R is set and the Percent R1,  R2 and R3 are defined based on the total  R.  R3 is calculated internally as 100 – R1 – R2.   Each loading manhole with RDII flow has a total  area, a hyetograph and a Unit Hydrograph.  The hyetograph has to be set at multiples of the unit hydrograph, so you can define the time or X columns with integers and then use the Block Edit command to change X to minutes by multiplying  by the Unit Hydrograph time (Figure 1).   You can use only one component if you set R1 or R2 to 100 percent or R3 to 100 percent by setting R1 and R2 to 0 percent (Figure 2).  The overall area of the Unit Hydrograph is divided amongst the loading manhole using the Subbasin Area (Figure 3).   The storm flows generated can be viewed using a Group Graph (Figure 4).

Figure 1.   Hyetograph Curve for the RDII Unit Hydrograph

Figure 2.  The Unit Hydrograph is defined for various values of R, R1,  R2, T1,  T2,  T3, K1,  K2 and  K3.

Figure 3.  The Unit Hydrograph and Hyetograph are tied to a particular loading manhole using a Subbasin Area.

Figure 4.  The Unit Hydrographs that are generated can be viewed using a Group loading Manhole Graph.  The R1, R2 and R3 have only one triangle.

How is the Maximum Link Flow Applied in SWMM 5?

Subject:  How is the Maximum Link Flow Applied in SWMM 5?

The maximum flow limit for a link applies to the kinematic wave and the dynamic wave solution.   The inflow to the link  in the kinematic wave solution is limited (Figure 1) but the calculated link flow is limited in the dynamic wave solution after the link flow (Figure 2):

1.       Is checked using the Culvert Inlet Equations (optional)

2.      The normal flow equation is checked (internally optional depending on the Normal flow options) and

3.      The Picard iteration solution under relaxation parameter (always 0.5) is applied (Figure 3).

Figure 1.  Kinematic Wave Solution Limits the Inflow to  the Link Maximum limit.

Figure 2. Dynamic Wave Solution link  flow limit.

Figure 3.  The Link  flow in the dynamic wave solution has three checks at each iteration in a time step.